
Memory Management for Heterogeneous Multicores
Simon Gerber

Systems Group, ETH Zürich
simon.gerber@inf.ethz.ch

April 4, 2013

1 Introduction
While memory management in single-core systems is a very-
well researched [6, 10, 11] – one might go so far as to say
solved – problem, nobody has really come up with a conclu-
sive solution for scalable memory management on a system
with more than a handful of cores, especially if those cores
have different views of the physical address space, actual
disjunct physical address spaces, different page table for-
mats and MMU architectures, or different NUMA regions
(we call such systems heterogeneous).

Existing operating systems are ill-equipped to handle
these kinds of heterogeneous multicore systems. Even
though there have been attempts to make the memory man-
agement system of Linux scale better on large multicore
systems, e.g. Corey [2] and the Tornado and K42 operat-
ing systems have shown that memory management (among
other OS services) scales better on larger multicore systems
when implemented using distributed objects [4, 12] there
is currently no readily available solution for heterogeneous
systems.

We believe that by employing the multikernel design
principles shown in Barrelfish [1], we can create a flexible,
scalable, and efficient memory management system for both
homogeneous and heterogeneous multicore systems.

2 Background
There has been some work on making existing memory man-
agement systems scale on large multicore systems. One
approach by Boyd and Wickizer [2] shows how new inter-
faces can help with making Linux’ memory management
scale better by being able to specify which memory regions
are shared where explicitly.

Another approach is shown by Gamsa et al. in the Tor-
nado operating system [4] and later by Da Silva et al. in
K42 [12]. By creating distributed objects for data structures
that are bottlenecks on a multicore system it is possible to
alleviate some of the unnecessary serialization that is present
in a classical centralized system.

However, both those approaches do not solve the more
general problem of managing memory in a heterogeneous
multicore system or a system with non-coherent physical
physical memory, disjoint or even worse, partially disjoint
physical address spaces. They also do not tackle all the
issues that arise from having NUMA architectures.

Another important piece of previous work, although
not directly related to memory management by default,
is the multikernel operating system design and implemen-
tation (we are focusing on the design presented by Bau-
mann et al. [1]) which defines the multikernel design prin-

ciples of a) no sharing of memory between the operating
system instances on different cores in a multicore system and
b) employing distributed systems techniques to synchronize
the copies of the operating system state on all cores.

Additionally, as we want to be able to make strong guar-
antees about the security of private memory regions and
about the distribution of physical memory to applications
(cf. Hand [6]), we need a resource management system that
can help us enforce access restrictions in a distributed set-
ting. One such system that has recently gotten more attention
again are capabilities [1, 7, 9]. In particular, Barrelfish uses
capabilities to manage and restrict access to any physical
resources in the system.

Noteworthy prior art in the context of the current design
of the memory management system in Barrelfish is Hand’s
self-paging [6]. The idea of self-paging ties into the exoker-
nel design principle of allowing user applications to manage
their resources by themselves in order to get an implemen-
tation that is tailored to their needs. Barrelfish also enables
applications to self-page by providing low-level access to
the memory management hardware through the capability
system.

3 History/Preparation
Preliminary work – in the context of my Master’s Thesis [5]
– has presented one possible building block for efficient
distributed memory management: making the resource man-
ager (RM) and the memory manager (MM) aware of each
other. The reason behind that coupling is that only the MM
can make sure that all the references that were created using
a security token (e.g. a capability in Barrelfish) are removed
when that token is revoked by the RM. This is important
because no access that has been acquired using a token is
allowed to survive the revocation of that token.

The implementation presented in [5] keeps some state
that represents the current mapping (if any) attached to each
copy of a capability. While managing this additional state
has some overhead, it is needed by the RM in order to
instruct the MM to remove the mappings belonging to a
capability that is being revoked.

The overhead can be mitigated in part by allowing user
space applications to batch the installing and removing of
mappings. Given an architecture that allows large/huge
pages1 and some careful design of the system call interfaces,
we can guarantee that an arbitrary mapping will only ever
need three system calls at most.

First experiments using a basic implementation of that
idea show that keeping in-kernel state for each mapped mem-
ory region has a relatively low overhead (see Figure 1) that is

1i.e. an architecture that has an equivalent of IA-32 large pages or Intel 64 large and huge pages [8].



offset by the fact that the new implementation only needs a
single system call for installing sequential page table entries
of the same mapping within a leaf page table.

1 128 256 384 512 640 768 896 1024
#pages

101

102

103

104

105

106

cy
cle

s

Cost increase per page due to
modifying two leaf page tables

Map performance (per page)
new (50th percentile)
new (99th percentile)
basic (50th percentile)
basic (99th percentile)

Figure 1: Cycles spent for mapping a single page

4 Goals
Seeing that modern hardware has more and more cores that
are not necessarily uniform (a lot of high-end smart-phones
have tightly integrated SoCs with heterogeneous ARM cores,
e.g. the OMAP44xx chips have two Cortex-A9 and two
Cortex-M3 cores that are user-programmable) and have com-
plex physical address space layouts, we feel that by applying
the multikernel design principles to memory management
we can create a flexible memory management system that is
efficient on both homogeneous and heterogeneous multicore
systems.

We believe that this research is important for many appli-
cations, databases and other large systems that rely on virtual
memory operations being fast and that actually need multi-
ple cores because they need an amount of processing power
that today’s (and most probably tomorrow’s) processors are
not able to provide with a single hardware thread as well
as embedded systems running on heterogeneous multicore
SoCs.

The research platform we have chosen for that work is
the Barrelfish operating system [1]. We choose Barrelfish
because some of the most important basic building blocks
for a decentralized memory management system like fast
IPC and distributed resource management (capabilities) are
already available.

Another, somewhat orthogonal, goal is to expose mem-
ory management hardware features to applications in a safe
manner where possible. While this idea is by no means
new [3], it still has not caught on in a lot of systems. One
key feature we would like to enable by exposing hardware
features is giving user programs the ability to layout data
structures in a non-overlapping way in the last-level CPU
cache without having to know the machine-specific cache
parameters.

5 Project outline
A first step, given the work detailed in section 3, is to design
a decentralized and fast memory management system for
homogeneous systems. A primary design goal in that step is
to making the memory management system easily adaptable
to the still quickly changing multicore hardware. This step

will also serve to evaluate the soundness of the design in a
simpler setting.

A next step would then be to modify our design to make
it handle simple heterogeneous systems (e.g. a system con-
taining IA-32 and Intel 642 cores or a mix of different ARM
cores). One possible architecture for such a system would
consist of having an abstract page table format that can effi-
ciently be translated to the hardware page table format by
each core.

Another feature of current multiprocessor systems that
needs to be considered when designing a memory manage-
ment system are NUMA3 domains. The reason NUMA
domains are important is that memory accesses inside a
NUMA domain are usually faster than memory accesses
that cross a NUMA domain boundary. We want our mem-
ory system to be able to provide an easy interface for user
applications to deal with NUMA domains.

As a bonus, we might be able to answer the question of
how to handle shared libraries in the presence of a operating
system that is fundamentally share-nothing. The apparent
incompatibility of a shared library with a shared-nothing
system needs to be addressed as shared libraries are a pre-
dominant means of reusing code. One possible approach is
to selectively replicate the contents of the shared library to
each NUMA region and point processes to the local copy of
the shared library.

References
[1] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,

A. Schüpbach, and A. Singhania. The multikernel: a new OS architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22nd sympo-
sium on Operating systems principles, SOSP ’09, pages 29–44, New York, NY,
USA, 2009. ACM.

[2] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: an
operating system for many cores. In Proceedings of the 8th USENIX confer-
ence on Operating systems design and implementation, OSDI’08, pages 43–57,
Berkeley, CA, USA, 2008. USENIX Association.

[3] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an operating
system architecture for application-level resource management. SIGOPS Oper.
Syst. Rev., 29(5):251–266, Dec. 1995.

[4] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado: maximizing lo-
cality and concurrency in a shared memory multiprocessor operating system.
In Proceedings of the third symposium on Operating systems design and im-
plementation, OSDI ’99, pages 87–100, Berkeley, CA, USA, 1999. USENIX
Association.

[5] S. Gerber. Virtual memory in a multikernel. Master’s thesis, ETH Zürich, May
2012.

[6] S. M. Hand. Self-paging in the Nemesis operating system. In Proceedings of
the third symposium on Operating systems design and implementation, OSDI
’99, pages 73–86, Berkeley, CA, USA, 1999. USENIX Association.

[7] N. Hardy. KeyKOS architecture. SIGOPS Oper. Syst. Rev., 19(4):8–25, Oct.
1985.

[8] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3: System Programming Guide. Number 325384-042US.
March 2012.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. seL4: formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.

[10] J. Liedtke. On micro-kernel construction. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, SOSP ’95, pages 237–250, New
York, NY, USA, 1995. ACM.

[11] R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky,
and J. Chew. Machine-independent virtual memory management for paged
uniprocessor and multiprocessor architectures. SIGOPS Oper. Syst. Rev.,
21(4):31–39, Oct. 1987.

[12] D. D. Silva, O. Krieger, R. W. Wisniewski, A. Waterland, D. Tam, and A. Bau-
mann. K42: an infrastructure for operating system research. SIGOPS Oper.
Syst. Rev., 40(2):34–42, Apr. 2006.

2We are using Intel’s terminology for the x86 architecture flavours.
3non-uniform memory access



Memory Management for
Heterogeneous Multicores
Simon Gerber / Systems Group, ETH Zürich

www.barrelfish.org
Problem Statement

IMemory management on single core well understood.
IExisting work on making memory management systems

scale to multicore (e.g. Corey, Tornado, K42).
INo accepted solution for managing memory in

heterogeneous systems or systems with non-coherent,
disjoint or partially disjoint physical memory.

Background

ICorey: Makes shared
regions more explicit with
new interfaces for Linux.

ITornado and K42: Clustered
objects on shared memory
multicore systems
eliminate bottlenecks on
data structures

IMultikernel design
principles: no sharing of
memory between cores
and employing distributed
systems techniques to
synchronize copies of the
OS.

IBarrelfish as multikernel
implementation:
Capabilities as resource
management system,
self-paging for memory
management.

core a

root address range a

stack a

shared address range a

results a

core b

root address range b

stack b

shared address range b

results b

Corey’s address ranges

P0 P1 P2

repreprep

Clustered object

object reference

K42’s clustered object design

x86

Async messages

App

x64 ARM GPU

App App

OS node OS node OS node OS node

State
replica

State
replica

State 
replica

State
replica

App

Agreement 
algorithms

Interconnect

Heterogeneous 
cores

Arch-specific 
code

The multikernel architecture

Preparation and History

IMaster’s thesis on making resource manager and
memory manager aware of each other (results below).

capability search tree 
ordered on 
(...,physical address,...)

(1) capability knows page table entry at which it is mapped

(2) we can lookup a capability 
based on physical address

capability search tree root

...

... ...

Frame capability

Page Table

IContext: Barrelfish research OS.

Goals

ICreate flexible memory management system by
applying multikernel design principles to MM.

IExpose MM hardware features securely and efficiently.
IFind generic representation for physical addresses on

systems with arbitrary physical address spaces.

Project

1.Create decentralized and fast MM for homogeneous
systems.

2. Extend system to handle simple heterogeneous systems
(e.g. a system with mixed IA-32 and x64 cores).

3. Take NUMA domains into account.
4.Generalize system for situations where we have unusual

physical address space(s).

Early Results

Performance improvement for new design: batch updates for sequential entries in the same leaf page table.

1 128 256 384 512 640 768 896 1024
#pages

101

102

103

104

105

106

cy
cle

s

Cost increase per page due to
modifying two leaf page tables

Map performance (per page)
new (50th percentile)
new (99th percentile)
basic (50th percentile)
basic (99th percentile)

1 128 256 384 512 640 768 896 1024
#pages

101

102

103

104

105

cy
cle

s

Cost increase per page due to
modifying two leaf page tables

Unmap performance (per page)

new (50th percentile)
new (99th percentile)
basic (50th percentile)
basic (99th percentile)


