
Towards decentralized memory management in a multikernel
Simon Gerber∗, Timothy Roscoe
{simon.gerber,troscoe}@inf.ethz.ch

Sep 9, 2012

Abstract

Seeing that modern hardware has more and more cores,
we feel that classic, centralized memory management is
not the ideal solution, especially in conjunction with a
multikernel operating system [1].

While there are solutions that address some of the
limitations of a centralized memory system in a multicore
environment [2, 3], we feel that we can do better by de-
signing a new approach that is based on a share-nothing
architecture, explicitly handles distributedness and non-
uniformness, and makes use of available hardware features
to provide sharing when the user requests it.

Additionally, we want to be able to make strong guar-
antees about the security of private memory regions and
about the distribution of physical memory to applica-
tions [5]. To do this, we enlist the help of a strict resource
management system (e.g. capabilities [6, 7]) that gives
its own guarantees about who gets to access a particular
resource (e.g. a region of physical memory).

The first step in order to make such a design work is to
make the resource manager (which is in charge of access
permissions) and the page table manipulation mechanisms
aware of each other so that at any given time, given either
a page table entry or a resource handle (capability) we
know who has access / where the resource indicated by
the handle is mapped [4].

First experiments using a basic implementation of that
idea show that keeping in-kernel state for each mapped
memory region has a relatively low overhead that is offset
by the fact that the new implementation batches updates
to sequential page table entries for the same mapping for
each leaf page table.

Having these basic operations, we can then start to ex-
periment with ideas for a decentralized and agile memory
management system. In a first step we are designing a de-
centralized memory management system for homogenous
systems that is agile in adapting itself to the ever-changing
multicore hardware. This design will serve to show if our
idea is sound and we can then extend the design to take
into account heterogeneity.

One way to extend our memory management system to
be able to handle hetergenous systems (e.g. mixed IA-32
and x86-64 cores) is to create a sufficiently abstract page
table format that – when replicated on each core – can
be translated by the cores into their local hardware page
table format. This will enable us to investigate policies

of where to construct page tables for which cores regard-
less of the exact hardware page table format by having a
“template” architecture-agnostic page table layout.

Another area to explore presents itself when looking at
sharing as a local optimization of replication. If we want
to treat sharing of memory objects as an optimization
for replication, we need to have support for fine-grained
shared-memory regions in the memory managmement sys-
tem.

An open question is how to handle shared libraries in
the presence of a operating system that is fundamentally
share-nothing. One way this could be implemented is by
actually replicating the shared library on all cores and
modifying each core-local page table tree to include the
pages where the local copy of the shared library is kept.

References
[1] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,

S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The multi-
kernel: a new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP ’09, pages 29–44, New York, NY, USA,
2009. ACM.

[2] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. Corey: an operating system for many cores. In Pro-
ceedings of the 8th USENIX conference on Operating systems
design and implementation, OSDI’08, pages 43–57, Berkeley,
CA, USA, 2008. USENIX Association.

[3] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
maximizing locality and concurrency in a shared memory multi-
processor operating system. In Proceedings of the third sympo-
sium on Operating systems design and implementation, OSDI
’99, pages 87–100, Berkeley, CA, USA, 1999. USENIX Associa-
tion.

[4] S. Gerber. Virtual memory in a multikernel. Master’s thesis,
ETH Zürich, May 2012.

[5] S. M. Hand. Self-paging in the Nemesis operating system. In
Proceedings of the third symposium on Operating systems design
and implementation, OSDI ’99, pages 73–86, Berkeley, CA, USA,
1999. USENIX Association.

[6] N. Hardy. KeyKOS architecture. SIGOPS Oper. Syst. Rev.,
19(4):8–25, Oct. 1985.

[7] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: formal verification
of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.

∗student



Towards decentralized memory
management in a multikernel
Simon Gerber, Timothy Roscoe / Systems Group, ETH Zürich

www.barrelfish.org

[1] Problem Statement

ICurrent OSes try to adapt memory-management to
heterogeneous and multicore systems

IProblem: high synchronization overhead and contention
on shared data structures

ISolution: Apply multikernel design principles to memory
management

[2] Current Solution: Adapt Existing Systems

Try to make memory management scale by:
IFine-grained locking of shared data structures (page

tables)
ISynchronizing changes across cores
IAdapting software to hardware cache-coherence

protocols
Changing one subsystem influences a lot of others

[3] Our Approach: Apply Multikernel Principles to MM

Build a memory management system using:
IExplicit communication using distributed systems

techniques
IShare-nothing architecture
ITreating caches and main memory as distinct units

[4] Conclusion

IEarly implementation looks promising
I In-kernel bookkeeping does not need to have big impact

on performance.

[3ext] Our Approach: Implementation Details

IFirst prototype built in the Barrelfish research operating
system

IMake resource management (capabilities) and memory
management aware of each other

capability search tree 
ordered on 
(...,physical address,...)

(1) capability knows page table entry at which it is mapped

(2) we can lookup a capability 
based on physical address

capability search tree root

...

... ...

Frame capability

Page Table

ISeparate mechanisms and policy: Utilize self-paging
IDefault policy: replicate all page tables and associated

capabilities
ISecurity: The resource management system checks

access rights when installing mappings

[5] Future Plans and Open Questions

IAdd support for heterogeneous systems
ICreate fine-grained memory-sharing mechanisms
IEnable shared library usage

[6] Early Results

Performance improvement for new design: batch updates for sequential entries in the same leaf page table.

1 128 256 384 512 640 768 896 1024
#pages

101

102

103

104

105

106

cy
cle

s

Cost increase per page due to
modifying two leaf page tables

Map performance (per page)
new (50th percentile)
new (99th percentile)
basic (50th percentile)
basic (99th percentile)

1 128 256 384 512 640 768 896 1024
#pages

101

102

103

104

105

cy
cle

s

Cost increase per page due to
modifying two leaf page tables

Unmap performance (per page)

new (50th percentile)
new (99th percentile)
basic (50th percentile)
basic (99th percentile)


