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Abstract

In this work, we are addressing how to support very
large volatile and non-volatile main memories and how to
manage them in OS-exported address spaces. We believe
that investigating memory management is an important
problem based on current hardware and software trends.
The fact that RAM is getting large and non-volatile mem-
ory is about to get very large changes the premises under
which an OS has to manage memory. The need for improv-
ing memory management in OSes is increased even more
as the memory management units (MMUs) of current
processors have not kept up with the increase in memory
size, as their translation-lookaside buffers (TLBs) are not
getting bigger, thus causing more page table walks due
to conflict misses in the TLB. Additionally page tables
for translating these amounts of addresses start taking up
non-negligible amounts of physical memory. On the soft-
ware side, we believe that future applications will be very
dynamic in terms of their memory needs with diverse us-
age patterns, warranting the use of pages of different sizes
as well as mixed usage of persistent and volatile memory,
and different requirements on the locality of their working
sets.

Our initial experiments show that although it is hard
to get good benefits from large pages [3], they can make
a difference. As mainstream operating systems do not ex-
pose managing pages of different sizes well, it is hard to get
those benefits. The core question we are addressing is what
happens when the application (or runtime system) gets
the chance to manage explicitly (but safely) both its own
physical memory and its own page tables. Then, if this ap-
proach proves to be beneficial, we will investigate how best
to package this functionality in the OS and system-level
libraries. We believe that the key benefits of this work
include the ability to deal with memory heterogeneity,
improve the flexibility of OS-level memory management,
and make managing emerging memory systems easier by
enabling application-based memory management through
a capability-based system.

Looking at the support for large pages in Linux we
see two methods which applications can use to allocate
large pages: transparent hugepages and hugepagetlbfs [4].
However both of these interfaces have drawbacks. Most im-
portantly, large page allocation in Linux is always backed
by a system-wide pool of large pages of uniform size. Thus
Linux cannot provide applications with different types of
large pages at the same time. Our approach eliminates the
need for a large page pool by building on self-paging [2],

where applications are in charge of managing their own
page tables and mappings, and combine self-paging appli-
cations with a decentralized resource management system
based on capabilities. The capability system allows appli-
cations to request arbitrary regions of physical memory
which are mappable as large pages.

We base our work on Barrelfish [1], so we can reuse
Barrelfish’s existing memory management system which
is built around managing resources using capabilities and
self-paging. Additionally, the core building block for Bar-
relfish’s self-paging is the capability system as well. Bar-
relfish’s capability system safely exposes the MMU hard-
ware to applications by having specialized capabilities for
managing page tables.

To make using different page sizes accessible to appli-
cation programmers, we extend the interface provided by
the standard Barrelfish library OS – which is modelled
after BSD virtual regions and memory objects – to accept
extra flags which indicate the page size that the new map-
ping should have. This interface allows user-space code
to select a page size for each mapping independently of
all other mappings.

In our initial experiments we focus on avoiding NUMA
interactions and show up to 4x improvements, while in
the worst case we do not see any change in performance.
Our next step is to investigate the effects of different
NUMA-aware allocation policies and to extend the model
to large-scale non-volatile memory regions. Additionally
we are going to extend our work to investigate ARM-based
systems, as well as investigating opportunities created by
sophisticated profiling of application memory accesses.
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Problem statement
IDRAM sizes growing while TLB sizes

remain fixed: large pages can help
I Linux’s large page management

inflexible
INon-trivial to get performance

benefits from large pages
IOur key idea: put applications in charge of their

address space
IEarly results show our approach to work well
INext steps: NUMA-awareness, extend to NVM,

improve decisions by leveraging on-line statistics

Key idea

Give applications control over their physical memory
and their page tables using capabilities, self-paging
and a library OS

call into OS:
map address X, size S

Operating 
system

App 1 App 2

App1 App2

map address X, size S

...
...

OS makes changes to page 
tables, allocating new page 
tables if necessary; later on, 
page faults will allocate backing 
pages if necessary

page tables
(owned by OS)

Classical memory manage-
ment system
IOS owns page tables
IApplications cannot

access MMU

Operating
system

App 1 App 2

page tables
(owned by apps)

App1 App2

map address X, size S

...
...

call into OS: map entries
Y - Y+S-1 in PageTable capability 
P using RAM capability C

OS only makes changes 
to page tables which 
were requested by the 
application.

Library OS
create mapping: find leaf 
PageTable capability P, 
allocate it if necessary; 
allocate RAM capability C. 
Calculate entry Y in P which 
corresponds to X

Self-paging
IApplications own their

page tables
IOS provides safe access to

MMU
ISelf-paging implemented on top of distributed

capability system: enable applications to manage
their own AS

I Library OS provides familiar interfaces on top of
unusual mechanisms

IExperimental implementation in Barrelfish

Conclusion
I Initial experiments promising: up to 4x performance

increase
ISelf-paging gives applications freedom in choosing

page sizes that fit their workloads
I Library OS enables system administrators to configure

system characteristics on an application by application
basis

Results: Running times

All results were obtained on a HP DL580 gen8 with
1.5TiB of RAM running x86_64 Barrelfish with large
page support.
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