
Distributed Object Capabilities
Simon Gerber∗, Timothy Roscoe; ETH Zurich

{simon.gerber,troscoe}@inf.ethz.ch

September 29, 2016

Abstract

Modern computers are rapidly increasing in size. This
leads to various problems, one of which is that it is get-
ting increasingly harder to keep track of who owns what
resources in the system. Object capabilities [3, 4, 6] are a
well-established method for tracking resource ownership.
Most of the previous work on object capabilities has been
done on small systems and the operation of such a capa-
bility system generally relies on a centralized database
which keeps track of all the existing capabilities. That
centralized database does not scale to a modern, rack-scale
computer system and needs to be distributed across the
nodes of such a system.

The operations that can be performed on capabili-
ties are: invoke, which allows an application to perform
an operation on the object referenced by the capability,
copy, which creates a new capability that references the
same object as an existing source capability, delete, which
deletes the capability, retype, which creates a new capabil-
ity, which we call a descendant, with a type that is derived
from the type of an existing source capability, and revoke,
which finds and deletes all copies and direct descendants
of a capability. The capability operations that need syn-
chronization, which we also call expensive operations, are
retype, delete, and revoke. The other operations, invoke,
and copy, we call cheap operations.

Our main contributions are: (1) a fast per-node index
for local capability lookups based on a number of query
parameters, and (2) a set of distributed algorithms for the
operations mentioned above. This work is based on work
done in the scope of a master’s thesis in our group [5].

The per-node capability index, which is needed to make
local capability operations fast, is an index over all the
capabilities in that node’s capability database. The index
is implemented as an AA tree [1], which is an isomorphism
of a 2–3 tree. The AA tree is a variation of the red-black
tree where red nodes can only be right subchildren. This
preserves the red-black tree property that the deepest
leaf is at no more than twice the depth of the shallowest
leaf, and further guarantees that the deepest leaf is the
rightmost element in the tree. We make heavy use of
the index when processing expensive operations, as all of
the expensive operations involve capability lookups on all
nodes. Those lookups are used to look for capabilities
that refer to the object on which the operation is executed
or objects that were derived from that object.

Expensive operations are synchronized by electing one
node in the distributed system as the leader and serializing

all the operations through that leader. The leader also
coordinates operations that involve multiple nodes in the
system. Notably, the leader node does not need to be
the same for all capabilities, and in order to load-balance
the system it is preferable to make all nodes leaders for
a subset of the total set of capabilities. If a non-leader
node N wants to perform an expensive operation on a
capability it will contact the leader node L which will
perform the operation on behalf of N .

Additionally, leadership can be transferred between
nodes, either voluntarily, or when the last capability to
an object that exists on the current leader node is deleted.
To elect a new leader in the latter case, we arbitrarily
pick another node that holds a capability to the object to
become the new leader.

We have a working prototype implementation of this
distributed capability design at a relatively small scale at
the operating system level in Barrelfish [2]. Barrelfish uses
segregated capabilities where the capability metadata is
stored in special capability regions in memory. We use a
custom implementation of the AA tree whose nodes are
stored along-side capability metadata. Each distributed
algorithm is implemented partly in the privileged-mode
kernel of Barrelfish, the so-called cpu driver, and partly
in the user-mode kernel of Barrelfish, the monitor, due to
Barrelfish’s multikernel design where cpu drivers cannot
directly communicate with each other.

References
[1] A. Andersson. Balanced search trees made simple. In Proceed-

ings of the Third Workshop on Algorithms and Data Structures,
WADS ’93, pages 60–71, London, UK, UK, 1993. Springer-Verlag.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The multi-
kernel: a new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP ’09, pages 29–44, New York, NY, USA,
2009. ACM.

[3] N. Hardy. KeyKOS architecture. SIGOPS Oper. Syst. Rev.,
19(4):8–25, Oct. 1985.

[4] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood. seL4: formal verification
of an OS kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, SOSP ’09, pages
207–220, New York, NY, USA, 2009. ACM.

[5] M. Nevill. An evaluation of capabilities for a multikernel. Mas-
ter’s thesis, ETH Zürich, May 2012.

[6] M. V. Wilkes. The Cambridge CAP Computer and Its Op-
erating System (Operating and Programming Systems Series).
North-Holland Publishing Co., Amsterdam, The Netherlands,
The Netherlands, 1979.

∗student



Distributed Object
Capabilities
Simon Gerber, Timothy Roscoe
{simon.gerber,troscoe}@inf.ethz.ch, Systems Group, ETH Zurich

Motivation

IDecentralized resource management at rack
scale is hard

IObject capabilities work at small scale
ICentralized design does not scale well

Contributions

IFast index for capability lookups on single node
IDistributed capability algorithms and database
IProof of concept implementation in Barrelfish

Example: Revoke

N1 CapIdx N2 CapIdx N3 CapIdx

Shared
Resource 1

Shared
Resource 2

C1 C1 C1’ C1 C2 C1 C2

Initial system state

N1 CapIdx N2 CapIdx N3 CapIdx

Shared
Resource 1

Shared
Resource 2

C1 C2 C2

System state after revoking C1 from N1

message channel
retype relationship

capability index entries
capability-object relationship

owned capability
foreign capability

Algorithm Design & Implementation

IAgreement protocol for each object
IOne leader node for each object
IOperations are serialized at leader node
IEach node has tree-based index for finding

descendants and ancestors of object

Algorithm Invariants

IEvery capability that is not Null has a leader node
IAny two capabilities that are copies must have

the same leader
IThe leader node for a capability must always

have a local copy

Future Work

Correctness
proofs for
algorithms

Performance
Evaluation

Conclusions

Good fit in
modern OS

Useful for
decentralized
access control

www.barrelfish.org


